Advanced Target Tracking Techniques
نویسنده
چکیده
In many engineering applications, including surveillance, guidance, or navigation, single stand-alone sensors or sensor networks are used for collecting information on time varying quantities of interest, such as kinematical characteristics and measured attributes of moving or stationary objects of interest (e.g. maneuvering air targets, ground moving vehicles, or stationary movers such as a rotating antennas). More strictly speaking, in these applications the state vectors of stochastically moving objects are to be estimated from a series of sensor data sets, also called scans or data frames. The individual measurements are produced by the sensors at discrete instants of time, being referred to as scan or frame time, target revisit time, or data innovation time. These output data (sensor reports, observations, returns, hits, plots) typically result from complex estimation procedures themselves characterizing particular waveform parameters of the received sensor signals (signal processing). In case of moving point-source objects or small extended objects, i.e. typical radar targets, often relatively simple statistical models can be derived from basic physical laws describing their temporal behavior and thus defining the underlying dynamical system. In addition, appropriate sensor models are available or can be constructed, which characterize the statistical properties of the produced sensor data sufficiently correct. As an introduction to advanced target tracking techniques characteristic problems occurring in typical radar applications are presented; key ideas relevant for their solution are discussed. Koch, W. (2006) Advanced Target Tracking Techniques. In Advanced Radar Signal and Data Processing (pp. 2-1 – 2-34). Educational Notes RTO-EN-SET-086, Paper 2. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp. RTO-EN-SET-086 2 1 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 01 SEP 2006 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Advanced Target Tracking Techniques 5a. CONTRACT NUMBER
منابع مشابه
Clutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملAutomatic Video Tracking Using Advanced Positive Frame Difference Predicted Window Technique
TV image is a subject of increasing interest due to the progress of the new technologies and fabrication of high resolution long range and fast microprocessors. A new technique for TV image tracking; advanced predicted window technique (APWT), is proposed. In this technique the tracking window is positioned at an advanced (predicted) position of the target moving center in a noisy background. I...
متن کاملDecentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements
Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...
متن کامل